Two types of K+ channels at the basolateral membrane of proximal tubule: inhibitory effect of taurine.

نویسندگان

  • Jean-François Noulin
  • Emmanuelle Brochiero
  • Jean-Yves Lapointe
  • Raynald Laprade
چکیده

The cell-attached configuration of the patch-clamp technique was used to investigate the effects of taurine on the basolateral potassium channels of rabbit proximal convoluted tubule. In the absence of taurine, the previously reported ATP-blockable channel, KATP, was observed in 51% of patches. It is characterized by an inwardly rectifying current-voltage curve with an inward slope conductance of 49 ± 5 pS ( n = 15) and an outward slope conductance of 13 ± 6 pS ( n = 15). The KATP channel open probability ( P o) is low, 0.15 ± 0.06 ( n = 15) at a - V p = -100 mV ( V pis the pipette potential), and increases slightly with depolarization. The gating kinetics are characterized by one open time constant (τo = 5.0 ± 1.9 ms, n = 6) and two closed time constants (τC1 = 5.2 ± 1.5 ms, τC2 = 140 ± 40 ms; n = 6). In 34% of patches, a second type of potassium channel, sK, with distinct properties was recorded. Its current-voltage curve is characterized by a sigmoidal shape, with an inward slope conductance of 12 ± 2 pS ( n = 4). Its P o is voltage independent and averages 0.67 ± 0.03 ( n = 4) at - V p = -80 mV. Both its open time and closed time distributions are described by a single time constant (τo = 96 ± 19 ms, τC = 10.5 ± 3.6 ms; n = 4). Extracellular perfusion of 40 mM taurine fails to affect sK channels, whereas KATP channel P o decreases by 75% (from 0.17 ± 0.06 to 0.04 ± 0.02, n = 7, P < 0.05). In conclusion, the absolute basolateral potassium conductance of rabbit proximal tubules is the resulting combination of, at least, two types of potassium channels of roughly equal importance: a high-conductance low-open probability KATP channel and a low-conductance high-open probability sK channel. The previously described decrease in the basolateral absolute potassium conductance by taurine is, however, mediated by a single type of K channel: the ATP-blockable K channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basolateral membrane K+ channels in renal epithelial cells.

The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess differen...

متن کامل

Effect of steviol on para-aminohippurate transport by isolated perfused rabbit renal proximal tubule.

An inhibitory effect of steviol, metabolite of the natural sweetener stevioside, on transepithelial transport of p-aminohippurate (J(PAH)) was observed in isolated S(2) segments of rabbit renal proximal tubules using in vitro microperfusion. Addition of steviol (0.01--0.25 mM) to the bathing medium significantly depressed J(PAH) (approximately 50--90%). This inhibitory effect was dose-dependent...

متن کامل

A mechanogated nonselective cation channel in proximal tubule that is ATP sensitive.

Ion channels that are gated in response to membrane deformation or "stretch" are empirically designated stretch-activated channels. Here we describe a stretch-activated nonselective cation channel in the basolateral membrane (BLM) of the proximal tubule (PT) that is nucleotide sensitive. Single channels were studied in cell-intact and cell-free patches from the BLM of PT cells that maintain the...

متن کامل

Rheogenic transport in the renal proximal tubule

The electrophysiology of the renal Na-K ATPase was studied in isolated perfused amphibian proximal tubules during alterations in bath (serosal) potassium. Intracellular and extracellular ionic activity measurements permitted continuous evaluation of the Nernst potentials for Na+, K+, and Cl- across the basolateral membrane. The cell membrane and transepithelial potential differences and resista...

متن کامل

Altered subcellular distribution of Na+,K+-ATPase in proximal tubules in young spontaneously hypertensive rats.

During early development of hypertension, the spontaneously hypertensive rat (SHR) demonstrates increased proximal tubule sodium reabsorption. Our previous observations of reduced Na+,K+-ATPase catalytic alpha1 and gamma subunit transcript abundance in SHR proximal tubule led us to test the hypothesis that increased proximal tubule sodium reabsorption may be attributable to altered subunit prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 277 2  شماره 

صفحات  -

تاریخ انتشار 1999